MATERIALS CATALOG

Graphene Nanoplatelets (1-5nm)

Graphene Nanoplatelets (1-5nm)

Price From: $130.00

Availability: In stock

Thickness: 1-5 nm

Product Detail

CAS No.: 7782-42-5

Types of Graphene Nanoplatelets

Product No. Product Name Thickness Diameter Size
GNNP0051 Graphene Nanoplatelets (2-10nm thick)  2-10nm  ~5µm  50g
GNNP0052 500g
GNNP01A5 Graphene Nanoplatelets (1-2nm thick) 1-2nm 5-10µm 500mg
GNNP0201 Graphene Nanoplatelets (1-5nm thick)   1-5nm   ~5µm   1g
GNNP0205 5g
GNNP0211 10g

 

1. Preparation Method

 Interlayer catalytic cleavage method

2. Characterizations

Thickness

1-5 nm

Flake Diameter

~5 μm

BET Surface Area

90-130 m2/g

Apperance

Black powder

 

 

Typical TEM Image of ACS Material Graphene nanoplatelets (1-5nm) 

 

Applications

  •  Use as a high performance additive for composites with PPO‚ POM ‚PPS‚ PC‚ ABS‚ PP‚ PE‚ PS‚ Nylon and rubbers.
  •  Can improve composites tensile strength‚ stiffness‚ corrosion resistance‚ abrasion resistance and anti-static electricity and lubricant properties.
  •  For all mechanical properties modifications‚ typical amounts are about 2-6wt%
  •  For conductivity modification‚ typical amounts are about 2-8wt%

Application Instruction

  • Mix Graphene nanoplatelets with the target polymer using a double-roller‚ banburymixer‚ twin screw extruder or other mixer commonly used in the plastics industry. For better dispersion of the product powder in the target polymer matrix‚ some surface modifiers‚ such as silane coupling agent‚ titanate coupling agent or aluminate coupling agent‚ etc are recommended to use before mixing the powder with plastics resin.

Attention

  • The effectiveness of modification depends very much on the type and the amount of surface modifiers used. We would be delighted to speak with you about what works best for your application.  Please call (US) 866-227-0656

Q&A

Q: What are the thermal stability of Graphene Nanoplatelets at ambient pressure?

A: GNPs will not oxide below 600 Celsius‚ and they are very stable.

Research Citations of ACS Material Products

  1. Xu, Peng, et al. “Load transfer and mechanical properties of chemically reduced graphene reinforcements in polymer composites.” Nanotechnology, vol. 23, no. 50, 2012, p. 505713., doi:10.1088/0957-4484/23/50/505713.
  2. Zhang, Xueping, et al. “Preparation and characterization of Pt nanoparticles supported on modified graphite nanoplatelet using solution blending method.” International Journal of Hydrogen Energy, vol. 38, no. 21, 2013, pp. 8909–8913., doi:10.1016/j.ijhydene.2013.05.038.
  3. Xia, Gaoqiang, et al. “Highly uniform platinum nanoparticles supported on graphite nanoplatelets as a catalyst for proton exchange membrane fuel cells.” International Journal of Hydrogen Energy, vol. 39, no. 28, 23 Sept. 2014, doi:10.1016/j.ijhydene.2013.08.033.
  4. Li, Xiguang, et al. “Forced assembly by multilayer coextrusion to create oriented graphene reinforced polymer nanocomposites.” Polymer, vol. 55, no. 1, 2014, pp. 248–257., doi:10.1016/j.polymer.2013.11.025.
  5. Wang, Xuebin, et al. “Three-Dimensional strutted graphene grown by substrate-Free sugar blowing for high-Power-Density supercapacitors.” Nature Communications, vol. 4, 2013, doi:10.1038/ncomms3905.
  6. Luan, Xinning, and Ying Wang. “Thermal Annealing and Graphene Modification of Exfoliated Hydrogen Titanate Nanosheets for Enhanced Lithium-Ion Intercalation Properties.” Journal of Materials Science & Technology, vol. 30, no. 9, 2014, pp. 839–846., doi:10.1016/j.jmst.2014.07.003.
  7. Yilmazoglu, O., et al. “Photocathodes based on graphene nanoplatelet emitters on semi-Insulating GaAs photoswitch.” 2014 27th International Vacuum Nanoelectronics Conference (IVNC), 2014, doi:10.1109/ivnc.2014.6894740.
  8. Swiderska-Mocek, Agnieszka, and Ewelina Rudnicka. “Lithium–sulphur battery with activated carbon cloth-Sulphur cathode and ionic liquid as electrolyte.” Journal of Power Sources, vol. 273, 2015, pp. 162–167., doi:10.1016/j.jpowsour.2014.09.020.
  9. Johnson, Drew W. “Characterizations of Nanofluid Heat Transfer Enhancements.” June 2013, doi:10.21236/ada590127.
  10. Wehnert, F., et al. “Design of multifunctional adhesives by the use of carbon nanoparticles.” Journal of Adhesion Science and Technology, vol. 29, no. 17, 2015, pp. 1849–1859., doi:10.1080/01694243.2015.1014536.
  11. Li, Mingqi, et al. “Fabrication of graphene nanoplatelets-Supported SiO x -Disordered carbon composite and its application in lithium-Ion batteries.” Journal of Power Sources, vol. 293, 2015, pp. 976–982., doi:10.1016/j.jpowsour.2015.06.019.
  12. Zhang, Genlei, et al. “Small-Sized and highly dispersed Pt nanoparticles loading on graphite nanoplatelets as an effective catalyst for methanol oxidation.” Nanoscale, vol. 7, no. 22, 2015, pp. 10170–10177., doi:10.1039/c5nr01882j.
  13. Filippidou, M.K., et al. “A flexible strain sensor made of graphene nanoplatelets/Polydimethylsiloxane nanocomposite.” Microelectronic Engineering, vol. 142, 2015, pp. 7–11., doi:10.1016/j.mee.2015.06.007.
  14. Zhang, Genlei, et al. “Facile synthesis of graphene nanoplate-Supported porous Pt–Cu alloys with high electrocatalytic properties for methanol oxidation.” Journal of Materials Chemistry A, vol. 4, no. 9, 2016, pp. 3316–3323., doi:10.1039/c5ta09937d.
  15. Nieto, Andy, et al. “Graphene reinforced metal and ceramic matrix composites: a review.” International Materials Reviews, vol. 62, no. 5, 2016, pp. 241–302., doi:10.1080/09506608.2016.1219481.
  16. Rashed, A.E., and A.A. El-Moneim. “Two steps synthesis approach of MnO 2 /Graphene nanoplates/Graphite composite electrode for supercapacitor application.” Materials Today Energy, vol. 3, 2017, pp. 24–31., doi:10.1016/j.mtener.2017.02.004.
  17. Dai, Shengdong, et al. “Biothiol-Mediated synthesis of Pt nanoparticles on graphene nanoplates and their application in methanol electrooxidation.” Journal of Materials Science, vol. 53, no. 1, Jan. 2017, pp. 423–434., doi:10.1007/s10853-017-1508-5.
  18. Piszczyk, Łukasz, et al. “Elastic polyurethane foams containing graphene nanoplatelets.” Advances in Polymer Technology, 2017, doi:10.1002/adv.21819.
  19. Yoo, Eunjoo, and Haoshen Zhou. “Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.” ChemSusChem, vol. 9, no. 11, 2016, pp. 1249–1254., doi:10.1002/cssc.201600177.
  20. Talati, Chetasi, and Eric Padron. “An Exercise in Extrapolation: Clinical Management of Atypical CML, MDS/MPN-Unclassifiable, and MDS/MPN-RS-T.” Current Hematologic Malignancy Reports, vol. 11, no. 6, 2016, pp. 425–433., doi:10.1007/s11899-016-0350-1.
  21. Gutić, Sanjin. “Primena materijala na bazi grafena u elektrokatalizi i skladištenju energije.” 12 Sept. 2016.
  22. Nasser, Ali, et al. “Enhancing stability of Co gradient in nano-Structured WC&Ndash;Co functionally graded composites using graphene additives.” Journal of the Ceramic Society of Japan, vol. 124, no. 12, 2016, pp. 1191–1198., doi:10.2109/jcersj2.16148.
  23. Liu, Biwu, et al. “Iron oxide nanozyme catalyzed synthesis of fluorescent polydopamine for light-up Zn2 Detection.” Nanoscale, vol. 8, no. 28, 2016, pp. 13620–13626., doi:10.1039/c6nr02584f.
  24. Brcic, Haris. “Investigation of the Rheological Properties of Asphalt Binder Containing Graphene Nanoplatelets.” NTNU, 2016.
  25. Gabriel Hunter MESA. Graphene enhanced piezoelectric article of manufacture, system and method of energy generator and storage cell .
  26. Strankowski, Michał, et al. “Morphology, Mechanical and Thermal Properties of Thermoplastic Polyurethane Containing Reduced Graphene Oxide and Graphene Nanoplatelets.” Materials, vol. 11, no. 1, June 2018, p. 82., doi:10.3390/ma11010082.
  27. Köckritz, Tilo, et al. “Integration of carbon allotropes into polydimethylsiloxane to control the electrical conductivity for novel fields of application.” International Journal of Adhesion and Adhesives, 2017, doi:10.1016/j.ijadhadh.2017.12.001.
  28. Kumar, Pravir, et al. “Strength of Mg–3%Al alloy in presence of graphene nano-Platelets as reinforcement.” Materials Science and Technology, 2018, pp. 1–10., doi:10.1080/02670836.2018.1424380.
  29. Negro, E., et al. “Graphene-Supported Au-Ni Carbon Nitride Electrocatalysts for the ORR in Alkaline Environment.” ECS Transactions, vol. 72, no. 29, 2016, pp. 1–14., doi:10.1149/07229.0001ecst.